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We present experimental evidence of the localization of linear gravity waves on a 
rough (i.e. random) bottom in a one-dimensional channel. The localization 
phenomenon is observed through very precise measurements in a wave tank. Viscous 
dissipation and rough-bed finite-size effects are examined. The experimental 
estimation of the localization lengths are compared with the theoretical predictions 
of Devillard, Dunlop & Souillard (1988). Finally, the resonant modes due to the 
disorder are directly observed for the first time. 

1. Introduction 
The interaction of surface gravity waves with a rough bottom is a subject of 

fundamental importance to coastal engineers and sedimentologists. Some pre- 
existing topography may provide a mechanism for coastal protection and for possible 
dune growth if the bed is erodible. More precisely, submerged parallel bars may 
reflect incident waves, the combination of incident and reflected waves leading to a 
partially standing wave structure with all that this implies for preferred regions of 
deposition and erosion on the sand bed. Davies (1982a, b)  has demonstrated that 
reflected waves can be resonated by equally spaced bars if the bar wavelength is one- 
half that of the incident waves. Experiments demonstrating this resonant reflection 
have been reported by Heathershaw (1982) and Davies & Heathershaw (1984). This 
kind of resonant reflection is known as Bragg reflection in solid-state physics. It also 
corresponds to the first forbidden band found by Brillouin in the quantum theory of 
solids : a beam of electrons with energy in the forbidden range is totally reflected by 
a regular lattice, which is modelled as a periodic variation in the potential field (see 
Kittel 1983). 

Prior to those of Davies there exist papers on long waves over periodic bottoms 
(McGoldrick 1968; Rhines 1970; Rhines & Bretherton 1973) and, more recently, 
some other authors motivated by his work have considered the resonant-interaction 
phenomenon (Mitra & Greenberg 1984; Mei 1985; Dalrymple & Kirby 1986; Kirby 
1986). Although the correspondence with solid-state physics has been pointed out in 
some of these works, none of them considers the crucial modification which happens 
in the case of a random bottom. It has been suggested by Guazzelli, Guyon & 
Souillard (1983) that the phenomenon known as Anderson localization in solid-state 
physics should be observed for shallow gravity waves if the bed is random. 

The theory of localization deals with linear waves, described by a Schrodinger 
equation, a Helmoltz equation or a similar wave equation, propagating in a static 
disordered medium. The waves undergo many partial reflections and transmissions 
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from the scattering centres in the disordered medium and the various transmitted 
and reflected waves, which have random dephasing, interfere with each other. The 
theory of localization predicts the behaviour resulting from all these interferences. 
The basic result is that, if the disorder is strong enough, the wave will not propagate 
in the medium. More precisely, the stationary solutions or proper modes are 
exponentially localized, i.e. they decay exponentially along the medium with a rate 
of decay called the localization length (see Thouless 1974, 1982 ; Lee & Ramakrishnan 
1985 ; Souillard 1987). In a one-dimensional medium, any disorder is strong enough 
to induce the exponential localization phenomenon (see for instance Borland 1963 ; 
Ishii 1973; Delyon, LBvy & Souillard 1985). The localization phenomenon was 
initially discovered in the study of electric conductivity of disordered solids. Since 
the localization phenomenon is not specific to electrons but is a genuine wave- 
interference effect, several applications of localization ideas have been proposed for 
classical waves propagating in one-dimensional disordered media : acoustic waves 
(Hodges 1982; Hodges & Woodhouse 1983; Baluni & Willemsen 1985; DBpollier, 
Kergomard & Laloe 1986 ; Kirkpatrick 1985), electromagnetic waves in plasmas 
(Escande & Souillard 1984), third or fourth sound waves in helium liquids (Cohen & 
Machta 1985; Condat & Kirkpatrick 1986), light waves (Bouchaud & Daoud 1986; 
Flesia, Johnston & Kunz 1987), electrical waves in a chain of random impedances 
(Akkermans & Maynard 1984). 

The present study follows the preliminary work of Guazzelli et al. (1983) which was 
one of the first attempts to study localization on a macroscopic scale. The principle 
of an experiment to demonstrate the localization phenomenon was described and 
some estimations of the localization length were derived for the simplest case 
examined, namely linear shallow-water theory. The present paper deals with the 
interaction of linear gravity waves with a static one-dimensional random bottom and 
gives experimental evidence of the localization phenomenon. Parallel to the present 
work, theoretical calculations have been performed by Devillard, Dunlop & Souillard 
(1987) for the same kind of bottom as used in the experiments in order to enable 
comparisons between measured and predicted localization lengths. 

Localization theory should apply to the simplest model of shallow-water gravity 
waves, i.e. the linear long-wave equation (the drastic physical limitations of which 
are discussed by, for example, Whitham 1974) : 

(1) 

where g is the acceleration due to gravity, the horizontal x-axis i s  taken a t  the mean 
free-surface level (y = O),  ~ ( x ,  t )  is the vertical displacement of the free surface and 
y = - H ( x )  defines the bed, which only varies in the z-direction. For this simple 
model it should be possible to demonstrate the close analogy with solid-&ate 
physics. 

rltt(x3 t )  = g ( H ( 4  ? l z h  t)),? 

The corresponding stationary equation for waves of frequency f = w / Z n  is 

- ~ 2 7 1 ( ” )  = s (H(x )  T z ( 4 ) z .  (2) 

I n  the case of a horizontal flat bottom H ( x )  = H a ,  the stationary solutions are plane 
waves with velocity (gH,)t. In  the case of a sinusoidal bottom, (2) could be 
transformed into a Mathieu equation with forbidden bands corresponding to strong 
reflection of the incident wave appearing a t  2klK = 1, 2, 3, 4, ... where k is the 
wavenumber of the waves and K that of the bottom. 

In the case of random bottom, (2) is quite similar the stationary Schrodinger 
equation with a random potential. The localization length [ ( w )  for a frequency w can 
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be computed from the Lyapunov exponent y through <(w)  = y- ' (w) .  The Lyapunov 
exponent is given from the asymptotic behaviour of the solution of the stationary 
equation (2). For a bottom comprising steps with random heights and lengths, 
Devillard et al. (1987) have computed this exponent from a product of random 
transfer matrices. The resulting localization length diverges for small frequencies as 
w - ~ .  Since the long-wave approximation is no longer valid for large frequencies, 
calculations have been made on the basis of linear potential theory using the 
renormalized transfer matrix introduced by Miles (1967). The predictions of the 
potential theory follow closely those of the long-wave theory for small frequencies. 
The resulting localization length diverges both a t  small and large frequencies. The 
numerical results show a range of frequencies where the localization length is close 
to its minimum value and might be observable in a realistic experiment. 

However, there are certain physical limitations of linear potential theory which 
have been discussed by Devillard et al. (1988) and which may be stated as a set of 
simple conditions : 

(3) 
II' qk, -, H 

7 k 2  H-3 4 1. 

Moreover, the effect of surface tension is neglected in linear theory. It is necessary 
also to take into account dissipation and finite-size effects which are outside the scope 
of the original theoretical study and which are the two principal experimental 
limitations on the observations of the localization phenomenon. The localization 
length depends on frequency and disorder ; localization could be inobservable if the 
localization length is too large, e.g. much larger than the natural dissipation length 
of the wave or the size of the system (i.e. the length of the rough bed), These two 
limitations are now discussed from an experimental point of view. 

First, dissipation implies a damping of the wave ; this attenuation has a different 
nature from that induced by localization, which is an interference phenomenon 
involving back-scattering of the wave. If the wave is damped over a very short 
lengthscale by viscous dissipation, the additional damping due to localization might 
not be observable. Since only very rough estimates of viscous dissipation can be 
made, we have assumed, with good experimental justification, that viscous damping 
of the wave amplitude is almost the same on a random bottom as on a periodic 
bottom with the same average characteristics. Thus, we have extractted a localization 
length characteristic of the damping due to the randomness of the bed in the range 
af frequewies where lomlkation i e  visible. Experimental results for the random case 
are ownpared with those obtained far the periodic cage throughout thia study. 

Sleoonclly, in sl. realistic experiment, the random bottom has a finite length and, 
more prectisely in our experiment, its length is of the aame order aa the localization 
length in the r;tege ~f frequepcies where localiz8tion i a  observable. This gives rise to 
fluctugtions in the transmission coe@cient (or the reflection coefioient) which are not 
present in very large systems such as those used in the numerical calculations of the 
localization lengths (Devillard et al. 1988). These fluctuations, well known in solid- 
state physics (see for example, Azbel 1983 and Lee & Ramakrishnam 1985), are due 
to the occurrence of resonances. The eigenmodes, which are exponentially localized 
for an infinite system, are turned into resonances for a finite system. Since these 
resonant modes are trapped along the random medium, the wave could pass by 
tunneling and thus the transmission will be enhanced for the corresponding resonant 
frequencies. This implies a sample-to-sample dependence of the transmission. 
Throughout this study, the two effects of dissipation and finite-size are examined. 

In  92 the experimental set-up is described and in $ 3  the experimental results are 
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presented and compared with theoretical predictions. Finally, in $4, the results are 
discussed and the validity of the comparison with the theoretical model is examined. 

Further details of these results may be found in Belzons et al. (1987) and Guazzelli 
(1986). 

2. Experimental techniques 
2.1. The wave-tank and the beds of variable depths 

The experiments were carried out in a glass-walled wave tank (length = 4 m and 
width = 0.39 m), shown schematically in figure 1.  The average water depth H ,  was 
varied between 1 and 4 cm. Water depths were determined to within an estimated 
0.2 mm. A bottom composed of periodic or random steps was built into a false flat 
bottom with the mean water depth H,.  The different bottoms varied only in the 
x-direction along the tank so that, apart from weak edge effects, the motion of the 
wave was one-dimensional. 

Three main bottoms were used to in the experiments (see figure 2). The first 
bottom R is a random one consisting of 58 steps. The heights and lengths of the steps 
are randomly chosen with uniform distribution respectively in H ,  & AH and Lo & AL 
with H ,  = 1.25 cm, AL = 2.0 cm and Lo = 4.1 cm. This bottom corresponds to the 58 
first steps of the theoretical bottom R,, composed of 10000 steps used in the 
numerical calculations of the localization length by Devillard et al. (1987). Table 1 
gives the precise geometry of the random bottom R for 58 heights H and lengths L. 
We have also constructed other random bottoms by different permutations of the 
random steps. 

The second bottom P is periodic and corresponds to the mean characteristics of the 
random one, i.e. the length of the steps is Lo, the heights of the steps are successively 
H,&uH where uH = 0.75 cm is the standard deviation of the previous random 
heights and, finally, the two bottoms have the same total length. The wavelength of 
P is A = 8.2 cm. 

The third bottom RS is a randomly spaced one, i.e. only the lengths of the lower 
steps of the bottom P are randomly chosen with uniform distribution between 
L, = 2.0 cm and L, = 8.0 cm. Diminishing the mean depth of water increases the 
amplitude of the bottom modulation and thus of the disorder, which is characterized 

Other bottoms were used to perform auxilliary experiments to provide an 
experimental justification for the assumption concerning viscous dissipation outlined 
in $ 1 ,  i.e. that this dissipation only depends on the average characteristics of the 
bottom. These bottoms were as follows (see figure 2) : 

a periodic bottom P consisting of the same higher steps as the bottom P, but of 
shorter lower steps. I ts  wavelength is A = 2n/K = 6.2 cm; 

a periodic bottom P, consisting of steps with lengths Lo = 4.1 cm. The heights 
of the higher steps are successively H,+AH, and Ho+AH,  with AHl = 0.5 cm and 
AH2 = 1.5 cm. The heights of the lower steps are Ho-AH,  with AH3 = 1 cm. The 
wavelengths of the two Fourier components of this bottom are A ,  = 2n/K, = 8.2 cm 
and A ,  = 2n/K2 = 16.4 cm; 

a periodic bottom P’, which corresponds to the mean characteristics of the 
bottom P,, i.e. the length of the steps is Lo and their heights are successively 
H O f u H ,  where uH is the standard deviation of the heights of P,. The total length 
of each of these different bottoms is the same as that of the bottom P. 

by AHlHo. 
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FIGURE 1. Schematic diagram of the wave tank showing the positions of the wave generator WG, 
the absorbing beach B, the carriage C and the linear detector LD in relation to the random 
bed. 

J I I ... R 

X 

0 100 mm 

FIGURE 2. Schematic diagram of the variable bottoms used in the experiments. 

At the end of the tank, a 12' slope rubberized-fibre wave-absorbing beach B was 
built to prevent waves from being back-reflected onto the variable bottom. The 
length of the beach was equal to the wavelength of the longest-period waves a t  the 
highest water level examined. Shorter-period waves were expected to be more readily 
absorbed by the beach than these long-period waves. We discuss back-reflection by 
the beach in $3.1. This effect has been examined in detail by Davies & Heathershaw 
(1984). 
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H 
N (mm) 
1 -12.00 
2 8.50 
3 -3.50 
4 6.00 
5 -11.50 
6 - 1.50 
7 1.50 
8 - 9.00 
9 0.50 

10 12.00 

31 9.00 
32 - 7.00 
33 -10.00 
34 - 1.00 
35 - 8.00 
36 - 8.00 
37 - 4.50 
38 - 9.00 
39 11 .oo 
40 9.00 

L 
(mm) 
27.00 
32.00 
41.00 
58.00 
52.00 
36.50 
41.00 
32.50 
46.50 
24.00 

20.50 
27.50 
22.50 
35.50 
45.50 
41.50 
35.00 
49.50 
36.50 
49.00 

N 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

H' 
(mm) 

2.50 
9.50 
4.00 
2.00 
4.50 

-3.50 
11.00 

- 12.50 
1.50 

-4.50 

- 4.00 
- 8.50 
-4.00 

4.50 
11.00 
- 9.00 

5.00 
11.50 

-2.50 
- 5.50 

L 
(mm) 
57.00 
38.00 
24.50 
47.50 
24.00 
43.00 
50.00 
37.00 
34.00 
50.00 

49.00 
52.50 
52.00 
34.60 
44.00 
41.00 
58.50 
40.50 
53.00 
38.00 

N 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

51 
52 
53 
54 
55 
56 
57 
58 

H 
(mm) 

4.00 
12.00 
9.00 

-11.00 
-5.50 

2.50 
5.58 

-11.00 
6.50 
7.00 

- 10.50 
-2.50 

6.00 
7.00 

-4.50 
- 4.00 
- 10.00 
- 6.00 

~ 

L 
(mm) 
39.50 
45.00 
52.50 
24.50 
48.00 
41.50 
43.50 
22.50 
33.50 
53.50 

48.00 
29.00 
36.00 
29.50 
56.50 
29.00 
56.50 
47.50 

TABLE 1 .  Heights H' and lengths L of the 58 steps of the random bottom R. The heights H' are the 
heights above (+ sign) or under ( -  sign) the mean level H,. N is the number of the step. 

2.2. The wave generator 
Monochromatic sinusoidal waves of amplitude A,(.) were generated using a piston- 
type wave generator WG: vi(", t )  = Ai(x)  cos (kx-wt) .  (4) 

The vertical paddle of the wave generator was driven by a microstepping motor, 
and the motor monitored by an Apple IIe microcomputer. The wave frequency 
f = w / 2 n  ranged between 1 and 5 Hz with bulkhead amplitudes < 1 mm. The 
frequency was determined to an accuracy better than 0.0001 Hz. The wave generator 
was a t  all times operated within these limits to ensure that the waves were linear 
gravity waves. We shall discuss this point in $4. 

Since the time taken for the wave system to attain a steady state was always 
shorter than the duration of the experimental runs, the measurements described in 
$ 3  were representative equilibrium conditions. 

2.3. The wave measurements 
Measurements of the wave elevation were made using an optical method which is 
more accurate than the usual wave gauges (resistance or capacity type). This mcthod 
has been developed by Hebrard & Toulouse (1983) a t  the Toulouse ONERA-CERT. 
A laser beam (a 5 mW He-Ne Iaser) is incident a t  a right angle on the free water 
surface (see figure 3). The diffusion spot is focused on a linear detector LD (a 256 
pixels linear camera), using a lens L. The displacement A'B' of the image spot follows 
linearly the surface wave elevation AB. 

In  order to avoid volume diffusion, the water was coloured with blue ink. On the 
other hand, to ensure a good surface diffusion, a small quantity of soluble oil (0.05 %) 
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LD J/ 

FIGURE 3. Sketch of the optical set-up used in the measurement of the wave elevation. 

was added to the water. The resulting kinematic viscosity of the liquid was only 3% 
higher than that of pure water. 

The reading of the linear detector was controlled by the Apple IIe microcomputer 
which was synchronized with the wave generator to permit data acquisition over 
several (typically 20) wave periods. From records of the wave elevation r ( x , t )  
obtained at position x along the tank, the wave amplitude A ( x )  was obtained a t  each 
position from the relation 

where $ ( x )  is the phase of the wave (the reference phase being given by that of the 
wavemaker). 

To check the linearity of the wave, we examined the wave elevation more precisely 
by fitting it to the relation 

r (x ,  t )  = 4 x 1  cos (wt+$(x)) ,  ( 5 )  

thus obtaining the amplitudes A,(x) and phases $,(x) of the fundamental wave and 
its harmonics. 

All the optical devices and the linear detector LD were mounted on a carriage C 
(see figure 1 )  which could be slid along the top of the tank on two rails. The motion 
of the carriage was driven by a stepping motor which itself was monitored by the 
microcomputer. The smallest available displacement corresponding to one step was 
0.0456 mm. Thus wave amplitudes were measured all along the tank, the use of 
stepping motors for the motions of both the wave generator and the carriage ensuring 
reproducibility of the measurements. 

With this experimental set-up it has been possible to determine, for any given 
frequency, the reflection coefficient R, which is defined as the quotient of the reflected 
and incident wave amplitudes. The interference of the reflected and incident waves 
induces a modulation of the resulting wave amplitude A ( x )  which varies between 
A,,, - 1 + R and Amin - 1 - R. From the measurement of A ( x )  on the up-wave 
side of the variable-bottom region, we have deduced the rate of stationary 
waves RSW = Amax/Amin = (1  + R)/ ( l -  R) and thus the reflection coefficient R. 
Measurements have been made a t  distances greater than half a surface wavelength 



546 M .  Belzons, E .  Guazzelli and 0. Parodi 

from the start of the variable-bottom region in order to reduce the effect of the 
evanescent waves generated by the rough bottom. 

Wave amplitudes have also been measured throughout the variable-bottom region 
and thus the damping length 1 of the wave has been deduced by fitting A ( x )  to the 
rela tion 

A(%) - exp (7). (7)  

We have used a least-squares fit of In A ( x )  to x; in the examples given below in figures 
9 and 10, the correlation coefficient lay between 0.85 and 0.95. 

3. Experimental results 
As already mentioned in 8 1, the more drastic of the two experimental limitations 

on the observation of the localization phenomenon is due to the effect of viscosity. 
Viscous dissipation results in an exponential damping of the waves over the bottom 
for laminar boundary-layer flow, such that their amplitude behaves roughly as 

where d is a characteristic length called the dissipation length. The assumption of 
laminar flow is justified except on the sharp corners of the steps, since the wave 
Reynolds number in the present experiments was always very small : on a flat region 
Re = U 2 / w v  - 100, where v is the kinematic viscosity and U the local velocity 
amplitude in the potential-flow region outside the thin wave boundary layer. 

We know that in order to observe localization, the length d must not be too small 
with respect to the localization length 6 ;  otherwise the additional damping due to 
disorder would not be experimentally measurable. However, even if the effects of 
viscosity are weak, which is the case for water, it does not seem a priori easy to 
separate the effect of disorder, characterized by 6 ,  and the effect of viscosity, 
characterized by d ,  from the total experimental damping length 1. 

Dissipation is due not only to the friction on the bottom and sidewalls of the 
channel but also to the generation of vortices at  the edge of each step and, therefore, 
seems quite impossible to calculate. Thus we have been constrained to make only a 
rough experimental estimation of the viscous dissipation using the assumption 
presented in 9 1. A set of auxiliary experiments on periodic beds has been carried out 
to support this assumption. 

As a general rule in what follows, the experimental results obtained for a random 
bed are discussed with reference to the associated periodic bed. 

3.1. Rejlection coeficient 
Initially we compare experimental results for the random and associated periodic 
beds. For this comparison, the results are plotted on the same graphs (figures 4 4 ) .  

The periodic bottom P has been studied for two water depths: H ,  = 3 cm c 
M/H0 = 0.25) and H ,  = 1.75 cm (AHIH,  = 0.43). In  both cases the plot of R 
versus the wave frequency f shows (figures 4a, 5a  and 6a) a strong maximum at a 
frequency such that the wavenumber k satisfies approximately the Bragg condition 
for a sinusoidal bed of wavenumber K = 2n/A,  namely k = I&. For this reason, the 
frequency range around this maximum will be called the first forbidden band. 
For the smallest water depth H ,  = 1.75 cm (strongest modulation of the bed: 
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R 
0 

1 2 3 4 5 

f (H4 
FIGURE 4. Results for the reflection coefficients of the bed P (curve a )  and bed RS (curve b )  with 

H ,  = 1.75 cm. 

1 

R 

0.5 

0 
1 2 3 4 5 

FIGURE 5. Results for the reflection coefficients of the bed P (curve a)  and bed R (curve b)  with 
H ,  = 3 cm. 

f ( H 4  

M/H, =0.43, see figure 4a or 6 a ) ,  a second sharp peak of R appears in the 
investigated frequency range. This peak is the manifestation of a second forbidden 
band located about a frequency such that k = K .  

Let us now examine the behaviour of R for random beds. The randomly spaced bed 
RS used with a water depth H ,  = 1.75 cm, i.e. a ratio AH/H,  = 0.43, is moderately 
disordered since, in the frequency range of interest, the product of the average wave 
number (k) with the standard deviation vL of the step lengths L is close to one: 
uL(Jc) - 1 .  By comparison with the periodic case, we may observe from figure 4 that 
in the R(f)-spectrum which is chiefly modified in the passing bands, we can still 
recognize the first forbidden band. 



548 M .  Belzons. E.  Guazzelli and 0. Purodi 

R 
0 

1 2 3 4 5 

f (Hz) 
FIGURE 6. Results for the reflection coefficients of the bed P (curve a )  and bed R (curve b)  with 

H ,  = 1.75 cm. 

1 2 3 4 5 

f (Hz) 
FIGURE 7 .  Results for the reflection coefficients of the beach with H ,  = 1.75 em. 

The bed R with both random step lengths and heights has been studied for two 
water depths: H ,  = 3 cm and H, = 1.75 cm so that the disorder has been varied with 
the ratio A H I H ,  = 0.42 and 0.71. In the case of the smallest disorder (H, = 3 em, 
AH/Ho  = 0.42) we can still discern in the plot of R( f )  the outline of the first 
forbidden band of the periodic case (figure 5) .  On the other hand for the strongest 
disorder (H, = 1.75 cm, A H I H ,  = 0.71) the spectrum of R ( f )  is completely modified 
as compared with that for the periodic case: it displays huge oscillations over the 
entire frequency range and the passing bands have disappeared (figure 6).  

Figures 7 and 8 show the reflection coefficients for the beach, for which wave 
measurements were made on a flat bottom a t  the same location of the wave tank as 
for the above experiments to ensure that the reflected waves should be damped by 
viscosity in the same way. The beach reflection coefficients are of the order of 
R = 0.1-0.2 below 2 Hz because the length of the absorbing beach is not long enough. 
Above 2 Hz the beach reflection is negligible. In the low-frequency range, the beach 
back-scattering introduces uncertainty into values of the reflection coefficient. 
Davies & Heathershaw (1983) have shown that the true reflection coefficient R, is 
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1 2 3 4 5 

f (H4 
FIGURE 8. Results for the reflection coefficients of the beach with H ,  = 3 cm. 

1 - 
4 x 1  
(mm) 

0 
0 1 

x (4 
FIGURE 9. Variation of the amplitude of the wave elevation along the wave tank for the bed RS. 
Abscissa 0 corresponds to the beginning of RS. Curves (a) (f= 1.6Hz) and ( b )  (f= 1.9Hz) 
represent respectively a resonant and a non-resonant case. 

estimated in the experiments to within a range of uncertainty around the measured 
value R given by R, = R R,, where R, is the measured reflection coefficient of the 
beach. 

3.2. Behaviour of the wave amplitude along the random bed 
Owing to the great accuracy of the experimental set-up the observed behaviour of 
A ( x )  is strictly connected with the random character of the bed. For a given 
realization of the random bed, one can observe, a t  frequencies corresponding to 
oscillations in the R( f )-curve, quite clear reinforcements of A ( x )  which are never 
observed for a periodic bed: a t  these frequencies, the wave does not decay 
monotonically along the random bottom but increases in its middle region (figures 9 a  
and 10a). 
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I I 
(4 

1 .  - 
44 
(mm) 

0 
0 1 

I 1 (b)  

0 1 

0 1 

x (m) 
FIQURE 10. Variation of the amplitude of the wave elevation along the wave tank for the bed R. 
Abscissa 0 corresponds to the beginning of R. Curves (a) (f = 1.5 Hz) and (b )  (f = 1.7 Hz) represent 
respectively a resonant and a non-resonant case for the same realization of the bottom. Curve (c) 
(f = 1.5 Hz) is obtained for another random realization of the bottom. 

This behaviour is the manifestation of what has been described in the introduction 
as the resonant modes of the random bed. First, it has been checked experimentally 
that these resonances in the damping of A ( x )  occur for frequencies corresponding to 
a decrease in the reflection coefficient. The wave can be better transmitted through 
the help of resonances located near the middle of the bottom (figure 10a). This 
explains the strong fluctuations observed in the R(f)-curves (figure 6b).  

Secondly, the resonances are very sensitive to frequency variations for a given 
random bottom : figures 9 (a )  and 10 (a) show these resonant modes for the RS and R 
beds respectively. In both cases, a small frequency variation makes them disappear 
(figures 9b and l o b ) .  In  addition, for two different resonant frequencies, the spatial 
locations of the corresponding resonances are different. 

Thirdly, the occurrence of these resonant modes is sample dependent. Experiments 
on different random realizations of the bottom R obtained by permuting the random 
steps in a random way, show that, for a given frequency, the resonances strongly 
depend on the random realization (figure 10a, c ) .  
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3.3. Estimation of the dissipation length 
The damping of the amplitude A(%) of a wave propagating over a periodic bed is 
solely caused by viscous dissipation; hence the variation of A ( z )  can be 
approximately fitted by (7) with 1 = d out of the forbidden bands. 

Figure 11 shows the behaviour of 1 versus frequency for the bed P with H ,  = 3 cm 
(figure l l c )  and H ,  = 1.75 cm (figure l la) .  On to the general variation of 1 are 
superimposed local depressions which mark the forbidden bands where the wave is 
almost totally reflected. The damping length decreases when the frequency or the 
parameter AHIH,  is increased. 

In order to estimate the viscous dissipation length, we have performed auxillary 
experiments to characterize separately the influence of the step lengths and heights. 
It should be noted that the results concerning the two periodic beds P and P', which 
differ only in their wavelength, show the same value of I out of the forbidden bands 
(figure l l a  and b ) .  The viscous attenuation length in the passing bands seems to 
depend essentially upon the water depth over the highest steps. The position of the 
forbidden bands depends upon the linear density of steps, whereas their depth and 
width are given by the detail of the profile. 

We have carried out experiments first with the periodic beds P, and P', described 
in $2.1. In both cases (figure 12a, b ) ,  we have found approximately the same value 
for 1 in the passing bands. In figure 12 are also plotted two curves (1,2) showing the 
frequency dependence of the viscous attenuation length of a wave propagating over 
a flat bottom with 1 and 2 em water depths, which are respectively the water depths 
above the steps H,+AH, and H,+AH, of the bed P,. The values of 1 for Pi 
and P, are located between the limiting curves 1 and 2. We conclude from these 
experiments that the dissipation is not sensitive to the details of the bottom profile 
but depends only upon the mean characteristics of the bed. 

In addition, we have visualized the vortices generated at  the edge of each step. For 
this purpose we have deposited in pure water a small dye crystal on the top of a high 
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f (Hz) 
FIGURE 12. Results for the damping length 1 of the wave along the beds P, (filled circles, a )  and 
Pi (open circles, b )  with H ,  = 2.5 cm, and along flat bottoms with H ,  = 1 cm (curve 1 )  and with 
H = 2 cm (curve 2). 

step and observed, through the channel sidewalls, the fluid motion between this step 
( 1 )  and the next lower one (2). The dye reaches the sharp corner of the step ( 1 )  on 
account of the drift velocity (mass transport velocity). During the wave half-cycle, 
when the flow is upstream, a vortex is generated at  the edge of step ( 1 )  (figure 13a). 
During the following half-cycle when the flow reverses, a second vortex appears 
(figure 13b). These vortices are small features (some mm) and not symmetrical. After 
a complete wave cycle, a vortex pair is formed, and is then shed into the flow. The 
vortices appear not to be coupled between one step to the next (as compared with the 
case of strongly nonlinear waves with very large amplitude). 

From these observations, we conclude that the contribution of vortices to  
dissipation in the case of the random bed R is roughly the same as for the 
corresponding periodic bed P : both beds possess the same number of step edges and 
thus the same number of uncoupled vortices, and despite the fact that the vortex 
strengths are greater at high steps than at  low steps (for they depend upon the local 
amplitude of the oscillation), we may reasonably suppose that they cause the same 
average dissipation. 

Thus, this series of auxiliary experiments has justified the assumption, already 
quoted in $1 ,  that for a bed composed of steps with random height H and length L 
the viscous dissipation is the same as for a periodic bed having identical average 
characteristics, that is to say: 

a step length which is the mean value of the step lengths of the random bed, 
the same mean water depth H ,  as that above the random bed, 
step heights alternately H ,  + crH and H ,  - crH, where crH is the standard deviation 

the same total length. 
of the step heights for the random bed, and 
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FIGURE 13. Visualization of the vortices generated at the edge of an upper step of the bed R with 
H ,  = 1.75 cm a n d f =  1.9 Hz. I n  (a )  the  flow is upstream and in ( b )  the flow is downstream. 

3.4. Estimation of the localization length 

The experimental values of I for the bed R are plotted on figure 14 and compared 
with the values obtained for the corresponding periodic bed which are, according to 
the above zssumption, the viscous dissipation lengths d ,  outside the forbidden bands. 
For the smallest bed modulation (figure 14a)  the disorder is not sufficient to produce 
a significant difference between 1 and d (figure 14c) ; by comparison, for the strongest 
disorder (figure 146) the values of 1 in the frequency range 1-3Hz are significantly 
lower (by at  least 10%) than those of d (figure 14d).  Moreover, in this latter case, 
I (  f )  presents many fluctuations due to resonant modes. 

Let us now extract from the total wave amplitude attenuation, characterized by 
the length 1, the part due to the disorder, characterized by the localization length, by 
writing for the wave amplitude over a random bed the relation 

from which a rough estimate of the localization length can be obtained: 

cl= l-l-d-l, (10) 

where d is the viscous-attenuation length measured for the associated periodic bed, 
which has been extrapolated in the forbidden bands (see figure 14).  This formula (10) 
gives an approximation for 6 when 1 is lower than d (at  least 10% lower), in the case 
of a strong disorder. 

The experimental estimations of the localization length are plotted in figure 15, 
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FIGURE 14. Results for the damping length I of the wave along the bed R with H, = 3 cm (curve 
a) and H ,  = 1.75 om (curve b )  and along the bed P with H, = 3 om (curve c) and H, = 1.75 cm 

15 

1( 

5 (m) 

5 

T 

1 I I I I 

f (H4 
FIGURE 15. Variation of the localization length as a function of the wave frequency for the random 
bed R with H ,  = 1.75 cm (AHIH, = 0.71). The dots are the experimental estimations where the 
average has been performed over 5 realizations of the random bed R and the full vertical lines show 
the standard deviations. The dotted-line and full-line curves are the numerical results of Devillard 
et al. (1987) for the shallow-water and the full potential theories, respectively. 
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together with the numerical calculations : more precisely, as suggested by the theory, 
the dots are the experimental estimations {l-')-l, where the brackets denote the 
average over 5 different realizations of the random bottom R composed of 58 steps ; 
the dotted and full lines are the numerical results of Devillard et al. (1988) for the 
shallow-water and the full potential theories, respectively, in the case of the 
theoretical random bottom R,, composed of 10000 steps. In  the frequency range 
1.2-2.5 Hz the experimental estimations are in good agreement with the theoretical 
predictions of the full potential theory and moreover, one obtains the same minimal 
value of 6,  approximately 2 m, for the same frequency 1.7  Hz. The standard 
deviations shown in the figure become very important for frequencies outside the 
range because the localization length becomes large with respect to the size of the 
system and thus the experimental estimation of 6 does not have any meaning. In 
addition, a t  high frequency, viscous effects become dominant. 

4. Discussion 
Before the experiments described in $ 3  were carried out we verified that we were 

dealing with monochromatic linear gravity waves. Since very small wave amplitudes 
could be resolved with the experimental system, it was possible to confirm that 
typical wave steepnesses Ak were in the range 0.01-0.10, that the relative amplitude 
A/H was a t  most 0.05 and that the values of A / k S H 3  were in the range 0.03-0.8 (the 
largest value corresponding to the shallow-water limit), ensuring the linearity of the 
waves (see (3) expressing the limitations on linear potential theory). It should be 
noted also that, in the frequency range of interest, the effect of surface tension was 
irrelevant. This was checked experimentally by verifying the dispersion relation on 
a flat bottom. The waves examined in the experiments reported in $ 3  were, thus, 
gravity waves in shallow water or in water of intermediate depth. 

The remaining criterion involves the bed modulation AHIH,,. Its  largest value was 
not sufficient to induce nonlinearity in the waves. In  order to identify the presence 
of harmonics, we examined the wave elevation as explained in $2.3 (relation (6)). This 
investigation revealed that more than 95% of the wave elevatiod was a t  the 
fundamental frequency, the remainder being in the first harmonic. This provides a 
clear demonstration of the linearity of the wave field. 

The final criterion is that the flow above the bed should be potential. This 
requirement was not well satisfied since small vortices were generated at  each step 
and shed into the flow. 

The effects of these vortices as well as the friction on the bottom and the sidewalls 
of the tank are not taken into account in the theoretical models. The introduction of 
viscous effects in the computation proves rather complex, even in the case of a flat 
bottom: the damping lengths measured on a flat bottom are a t  least an order-of- 
magnitude smaller than those calculated by taking into account the viscous 
dissipation on the bottom and the sidewalls of the tank; a complete calculation 
should therefore take into account more complex effects (see, for example, Mei 1983, 
chapter 8). So we have chosen to estimate the dissipation effects experimentally. We 
have assumed that the dissipation for a random bottom is almost the same as for 
the associated periodic bottom with the same average characteristics. Various 
experimental checks reported in $3.3 suggested this hypothesis. We have also 
assumed that the total damping of the wave along the random bottom is due to a 
joint effect of localization and dissipation through the relation (9). This formula as 
well as the hypothesis about dissipation, although certainly not exact, gives a 
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reasonable approximation for the localization length. Nevertheless, the rangc of 
frequencies where the manifestations of the localization phenomenon could be 
observed was quite narrow, owing to the drastic effect of the viscosity. 

Another limitation concerns the small extent of the random bottom. In the best 
case, namely in the frequency range 1-3 Hz, the length of the bed is of the same order 
as the localization length. Averages over various realizations of the random bottom 
have thus been taken. On the other hand, our precises experimental set-up provides 
a direct means of observing resonant modes (characteristics of finite-size effects) by 
allowing measurement of the wave amplitude all along the tank. This is the first 
direct experimental observation of such resonances. Moreover, it has been checked 
experimentally that fluctuations in wave transmission are clearly related to the 
occurrence of these resonances. 

I n  other experiments on localization, resonances are seen indirectly through the 
fluctuations of the transmission coefficient. In  addition, experiments in solid-state 
physics are difficult to interpret owing to additional effects of inelastic processes 
(such as electron-electron interaction). 

5. Conclusion 
Measurements of linear gravity waves on random bottoms in a one-dimensional 

channel give evidence of the localization phenomenon. Thexperimental  results 
obtained for a random bed have been compared with those obtained for an associated 
periodic bed with the same average characteristics. First, it  has been demonstrated 
that, in the case of strong disorder, the passing bands found in the periodic case have 
disappeared and thus the transmission is diminished. Secondly, again in the case of 
strong disorder, we have observed directly for the first time the resonant modes 
predicted by localization theory. Moreover, i t  has been shown that these resonant 
modes are directly responsible for strong fluctuations in wave transmission. Finally, 
in the frequency range 1.2-2.5 Hz, the damping lengths of the wave amplitude along 
the random bottom are lower than those obtained in the periodic case. 

Since only very rough theoretical estimates of the viscous damping length can be 
obtained, it has been assumed, with good experimental justification, that this length 
is almost the same as the damping length for the associated periodic bottom. By 
extracting from the total wave amplitude attenuation the part due to disorder, we 
have estimated, in the above range of frequencies, the localization lengths. We have 
found good agreement between the theoretical predictions and our experimental 
estimations if effects associated with the finite extent of the random bed are taken 
into account. 

It would be interesting to carry out experiments for bed geometries without sharp 
corners. In  such cases the viscous dissipation would be reduced and the localization 
phenomenon would be more easily detected. Unfortunately, there are a t  the present 
time no calculations for smooth random bottoms. 
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